Adaptive-K Routing Benchmarks

Validated compute savings across MoE architectures

Updated: January 2025
3
Models Validated
36.5%
Avg Compute Savings
52.5%
Max Compute Savings
-0.5%
Max Accuracy Drop

๐Ÿ“Š Benchmark Results

Model Total Params Experts K (base โ†’ adaptive) Compute Savings Status
Mixtral 8x7B 46.7B 8 8 โ†’ 3.80
52.5%
โœ“ Validated
Qwen1.5-MoE 14.3B 60 4 โ†’ 2.70
32.4%
โœ“ Validated
OLMoE 1B-7B 6.9B 64 8 โ†’ 6.0 (per-layer)
24.7%
โœ“ Validated
DeepSeek-V3 671B 256 8 โ†’ TBD
Pending
โ—‹ Pending
DBRX 132B 16 4 โ†’ TBD
~30% est.
~ Estimated

๐Ÿ“ˆ Compute Savings by Model

๐ŸŽฏ K Distribution (Mixtral)

๐Ÿ“ฐ Industry Research

$7M
Avg Enterprise LLM Spend
Source: a16z 2024
2-5x
Budget Growth 2025
Expected YoY increase
96 GW
Datacenter Power 2026
Source: SemiAnalysis
$648/mo
H100 8-GPU Power Cost
@ $0.083/kWh

๐Ÿงฎ ROI Calculator

Monthly Projection

Baseline Cost $1,950
With Adaptive-K $1,268
Monthly Savings $683
Annual Savings $8,190

๐Ÿ’ก Come Funziona (in parole semplici)

I modelli AI moderni come DeepSeek-V3 e Mixtral usano una tecnologia chiamata Mixture of Experts (MoE): invece di usare tutto il "cervello" del modello per ogni domanda, attivano solo alcuni "esperti" specializzati.

Il problema? Attivano sempre lo stesso numero di esperti, anche per domande semplici come "Che ore sono?" che non richiedono tutta quella potenza di calcolo.

Adaptive-K risolve questo: analizza la "confidenza" del modello e decide automaticamente quanti esperti attivare. Domanda facile โ†’ pochi esperti. Domanda complessa โ†’ piรน esperti.

โŒ PRIMA (Standard)
Sempre 8 esperti attivi = costo fisso alto
โœ… DOPO (Adaptive-K)
2-8 esperti in base alla difficoltร  = risparmio 30-50%

๐Ÿค– MoE Models for Profiling

Provider Model Params Experts Top-K Price
TogetherDeepSeek-V3.1671B2568$0.60/1M
TogetherQwen3-235B-MoE235B12822$0.65/1M
TogetherQwen3-Coder-480B480B16035$2.00/1M
TogetherCogito-109B-MoE109B648$0.18/1M
OpenRouterMixtral-8x7B46.7B82$0.24/1M
DeepSeekdeepseek-chat671B2568$0.14/1M

๐Ÿข Enterprise Use Cases

Customer Support AI

High volume, many simple queries

Savings: 40-50%

Document Processing

Variable complexity extraction

Savings: 30-40%

Code Generation

High complexity tasks

Savings: 20-30%

Synthetic Data Gen

Massive scale, cost-sensitive

Savings: 45-55%

Ready to reduce your MoE compute costs?

Integrate Adaptive-K routing in minutes with our SDK

Learn More pip install adaptive-k-routing Read Whitepaper